Sufficient Conditions for Density in Extended Lipschitz Algebras
نویسندگان
چکیده مقاله:
این مقاله چکیده ندارد
منابع مشابه
Sufficient conditions for univalence and starlikeness
It is known that the condition $mathfrak {Re} left{zf'(z)/f(z)right}>0$, $|z|
متن کاملClosed Ideals, Point Derivations and Weak Amenability of Extended Little Lipschitz Algebras
...
متن کاملSufficient Conditions for the Projective Freeness of Banach Algebras
Let R be a unital semi-simple commutative complex Banach algebra, and let M(R) denote its maximal ideal space, equipped with the Gelfand topology. Sufficient topological conditions are given on M(R) for R to be a projective free ring, that is, a ring in which every finitely generated projective R-module is free. Several examples are included, notably the Hardy algebra H∞(X) of bounded holomorph...
متن کاملThe structure of ideals, point derivations, amenability and weak amenability of extended Lipschitz algebras
Let $(X,d)$ be a compactmetric space and let $K$ be a nonempty compact subset of $X$. Let $alpha in (0, 1]$ and let ${rm Lip}(X,K,d^ alpha)$ denote the Banach algebra of all continuous complex-valued functions $f$ on$X$ for which$$p_{(K,d^alpha)}(f)=sup{frac{|f(x)-f(y)|}{d^alpha(x,y)} : x,yin K , xneq y}
متن کاملWeighted Composition Operators Between Extended Lipschitz Algebras on Compact Metric Spaces
In this paper, we provide a complete description of weighted composition operators between extended Lipschitz algebras on compact metric spaces. We give necessary and sufficient conditions for the injectivity and the sujectivity of these operators. We also obtain some sufficient conditions and some necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 1
صفحات 141- 151
تاریخ انتشار 2014-06-30
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023